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The Chebyshev—tau spectral method for approximating eigenvalues of boundary
value problems may produce spurious eigenvalues with large positive real parts,
even when all true eigenvalues of the problem are known to have negative real
parts. We explain the origin and nature of the “spurious eigenvalues” in an ex-
ample problem. The explanation will demonstrate that the large positive eigenval-
ues are an approximation of infinite eigenvalues in a nearby generalized eigenvalue
problem. (© 1998 Academic Press
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1. INTRODUCTION

Spectral methods of numerical solution for some differential eigenvalue problems
cluding hydrodynamic stability problems may produce a set of “spurious eigenvalt
along with approximations to the true eigenvalues. An extensive literature that include
early work of [11] and later in [3, 5, 9, 16, 21, 24, 25] documents this phenomenon.
intent of the present paper is to uncover the nature and origin of these “spurious e
values” in the context of a typical model problem, proving that they exist at all ord
of truncation in the Chebyshev—tau method, proving that “spurious eigenvalues” exi
all orders of truncation in a range of associated spectral methods, establishing how
behave under increases in truncation order for a range of spectral approximation me
and explaining why they arise. Several authors have asserted that the spurious eiger
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are a consequence of the “discretization” of the problem, while other authors have st:
that the reason for the occurrence of the spurious eigenvalues is unknown. Our explan:
will show that the spurious eigenvalues are an approximation of infinite eigenvalues i
generalized eigenvalue problem from a “nearby” Legendre spectral approximation of
boundary value problem. Our explanation of the origin of the spurious eigenvalues gi
a reasorad hocmethods for eliminating the spurious eigenvalues work. Thus, this pap
should give users of the Chebyshev—tau method, one of several spectral methods avai
guidance in the method’s use for approximating eigenvalues.

Previous authors usually define “spurious eigenvalues” as the positive or unstable eif
values when it is obvious that positive eigenvalues are not eigenvalues of the model prok
under investigation. Here we show that some negative eigenvalues arising frachtibe
methods for eliminating spurious eigenvalues share perturbation and growth charact
tics with the spurious eigenvalues from the direct Chebyshev—tau method. This provid
clue about the nature and origin of the “spurious eigenvalues” as approximations of infit
eigenvalues in a generalized eigenvalue problem and permits a generalized definitio
spurious eigenvalues.

The Chebyshev—tau method and other spectral methods applied to the model prol
lead to a generalized eigenvalue problem of the féem= A Bx. Stewart and Sun [20] have
a complete theory for generalized eigenvalues that we use extensively. A more symm
form of the generalized eigenvalue problerf i = « Bx, where a pair of complex numbers
a, B with ratio A = «/8 becomes a generalized eigenvalue. More precisely, since pairs
complex numberg, 8 with common ratiax represent the same eigenvalue, lines throug
the origin in the complex plan@? represent generalized eigenvalues. More simply, line
through the origin correspond to points on the unit circle. For the model problem \
consider it is simpler yet, since we can takes to be real numbers, and so we can picture
the generalized eigenvalues as points on the unit cirdeifThe important point to notice
now is that if B has a nontrivial null-space whil& is nonsingular, thea =1, 8=0is a
generalized eigenvalue. This pait, 0) is an “infinite eigenvalue.” The pointl, 0) now
acts as a “point at infinity.” Perturbations can then move the eigenvalue into either the ug
half-plane, or the lower half-plane, resulting in respectively a large-magnitude positive
negative ratio; see the schematic diagrams in Fig. 1.

Aside from the spurious eigenvalues, the Chebyshev-tau method computes the rema
eigenvalues accurately and efficiently, accounting for the method'’s popularity and util

B o/

J . perturbation

FIG. 1. Schematic diagram of perturbations of generalized eigenvalues.
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The practical effect of the existence of “spurious eigenvalues” is to cast doubt on re:
obtained from the application of the Chebyshev—tau method to a stability analysis
flow or structure. If positive eigenvalues, indicating exponential growth of a disturbar
are really spurious then the analyst may conclude incorrectly that the system is unst
It is important to either alter the method to not compute spurious modes or to ider
spurious modes so that they can be ignored in the analysis. Works addressing elimin
of spurious modes include [9, 13, 16, 25] and those that simply state that spurious m
were computed and then ignored include [3, 22, 24]. The perturbation results in this p
give a more effective means of identifying spurious eigenvalues through their growt
magnitude as a function of truncation order.

We begin in Section 2 by defining the model problem that guides the explanation of
spurious eigenvalues in the spectral-tau method. Section 3 describes a parity reduction
problem that simplifies later work. In Section 4 we then derive the characteristic polynon
firstin the Chebyshev—tau case, then in the more general Gegenbauer—tau case. This
us to determine the sign and growth of the largest magnitude eigenvalues for the entire |
of tau methods. Section 5 starts with a reduction to an equivalent basis of monomials in¢
of Gegenbauer polynomials to reduce the matrices to standard triangular-Hessenberg
We can then apply the theory for generalized eigenvalues to show the model problen
an infinite generalized eigenvalue. For the related Gegenbauer—tau spectral methoc
show there is a generalized eigenvalue that is a perturbation of the infinite eigenvalue
determine the size of the perturbation and find that it matches the growth of the magni
of the eigenvalues from the characteristic polynomial method derived previously. Secti
gives the explanation of the origin of infinite generalized eigenvalue in the Legendre-
method. The boundary conditions and the form of the Legendre polynomials coinc
permitting the existence of a special solution corresponding to the infinite eigenva
Finally, we present some conclusions based on this paper’s results. Some backgrounc
are in an appendix.

2. THE MODEL PROBLEM AND THE TAU METHOD

We will consider the model problem

u® =su’, -1l<x<1, O
u—) =u@ =uvE-=DH=u@l=0

for the occurrence of spurious eigenvalues when applying the Chebyshev—tau meth
boundary value problems. The model problem occursin [11, pp. 143-144] from a separ:
of variables applied to a one-dimensional model of the vorticity-streamfunction equati
for low Reynolds number incompressible flow. This model problem is also considere
[9, 13, 16].

A similar boundary value problem occurs in hydrodynamic stability analysis in spheri
coordinates,

D2u=sDu, ri<r <ry,

u(ry) = u(ra) = U'(ry) = u'(ry) =0,
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where the second-order differential operator,

2 [+ Du
Du=u"(r U - —
()+r 7

occurs, instead of the second-derivative operator. The opdbatuises from the spectral
decomposition of the Laplacian in spherical coordinates. This problem also has spuri
eigenvalues when applying the Chebyshev—tau method. See [9, 10, 23] for details.
structural similarity to the model problem (1) is obvious.

Another example is the Orr—Sommerfeld stability equation for plane Poiseuille flow

[u® — 202" 4+ o*u] /(=iaR) + [(U —)(U" —¢’u) —U"u] =0, —1l<x <1,
with boundary conditions
u(=1) =u@) =u(=1) =u(1) =0,

whereu is the amplitude of the velocity disturbaness the wavenumbeR is the Reynolds
number, the stability parameter for this problem, Bin@) = 1 — x?is the known steady base
flow whose stability is being examined. Itis important to know the valuR,efhere at least
one eigenvalue first has a positive imaginary paR &sincreased from zero, because for this
eigenvalue the disturbance will grow exponentially in time, instead of being damped out.
more details see [9, 17, 24]. In this problemf] — 2«?u” + a*u]/(—iaR) is a fourth-order
differential operator and{) — s)(u” — o?u) — U”u] is a second-order differential operator.
The structural similarity to the model problem (1) is also obvious. Using the Chebyshe
tau spectral method produces two spurious eigenvalues with large positive imaginary p
these spurious eigenvalues are clearly recognized by the large magnitudes of the valu
at least one of the tau coefficients (see [9] for details).

The eigenvalues of the model problem (1) are all negative and satisfy sithen?s?
or tan(,/—s) = +/—s. The first five eigenvalues are (numerically)

s = —n? ~ —9.869604401

s ~ —20.19072856

s3 = —4n? ~ —39.47841760 )
s1 ~ —59.67951594

S = —9n% ~ —88.826439612

The corresponding eigenfunctions are respectively
1+ (=)™ cognmx)
and
—+/=35c09+/—SX) + Sin(~/—SX).

Lanczos [14, 15] first proposed the tau method as a means of solving boundary vz
problems without requiring basis functions to satisfy the boundary conditions. Fox [7,
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TABLE |
Eigenvalues, Including Spurious Eigenvalues, for the Model Problem (1) Computed
with the Chebyshev-Tau Method

N 1 2 3 4 5 6
Eigenvalues 40 251.453 529.388 1331.132 2284.474 4272.17
12 40. 251.453 529.388 1331.132 2284.47
—11.453 —11.453 —9.892 —9.892 —9.870
—25.388 —25.388 —20.338 —20.338
—61.239 —61.239 —40.663
—104.136 —104.136
—189.638

later extensively developed its use with Chebyshev polynomials. Ortiz [18] extended
method with the use of canonical polynomials. Orszag [17] applied and advocated
Chebyshev—tau method for a wide variety of problems. See [9] for an example of appl
the tau method to the model problem (1). Boyd [4, Chap. 18] has a useful and interes
overview of the history and philosophy of the tau method.

The tau method uses a truncated series expansion in a complete set of orthogonal
tions as an approximation for the solution of an ordinary differential equation. We v
use the family of Gegenbauer (or ultraspherical) polynomials as the complete orthono
set of functions. The family of Gegenbauer polynomials include the Legendre polyno
als and Chebyshev polynomials of the first and second kind as special cases. Cheb
polynomials work well for this approximation technique because of their nearly optin
uniform approximation of continuous functions, their orthogonality and completeness,
other extremal properties [19]. In certain cases, the Chebyshev expansion is optimal a
all expansions in terms of Gegenbauer polynomials (see [19] for a precise statement).
optimality accounts for the common use of Chebyshev polynomials for numerical app!
imations of all kinds.

Table | gives the eigenvalues from the various orders of Chebyshev—tau approxim:
of the boundary value problem (1). Note that two large positive eigenvalues result from
calculations and that they increase as the order of approximation increases. The ne
eigenvalues appearto be converging to the values (2) of the boundary value problem (1).
also that the eigenvalues “leap-frog,” that is, the largest eigenvalue in cdlubvetomes
the second largest positive eigenvalue in columa- 1. Likewise the least eigenvalue in
column N becomes the next-to-least eigenvalue in colusha 1. An abridged table of
eigenvalues for higher truncation orders is given in [11, 16]. The entriifer6, common
to the table above and to [11, 16], agree. However, the interest here is not in extendin
table to high orders of approximation, but rather to explain the origin and nature of the
large positive eigenvalues that are spurious for the boundary value problem (1).

3. PARITY REDUCTION OF THE PROBLEM

The parity of the model problem (1) allows a reduction of the problem for theoreti
purposes that exposes the more important and interesting phenomenon of the spt
eigenvalues in a clearer fashion. Recall that odd index Gegenbauer polynomials are
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polynomials and even index Gegenbauer polynomials are even [12, 19] for all value:
the parameter. Since the derivatives in (1) are of even order, any odd index Gegenbat
polynomial inserted into the differential equation will remain odd after differentiation:
This has the effect of partitioning the problem into odd and even portions. Such a pa
reduction is common in spectral methods (see [4, Chap. 7]). It will suffice to examine o
one subportion, say, the even portion of the problem.

Application of this reduction to the Chebyshev—tau method explains the “leap-froggin
of eigenvalues observed in Section 2. For, gdy,odd, M =2N + 1, the problem (1)
factors into an “odd” equation of sizeN + 1) x (N + 1) and an “even” equation of size
(N +1) x (N +1). The odd portion comes from the odd Chebyshev polynoniigls),
T3(X), ..., Tans+1(X). Increasing the size of the approximationNb+ 1, we would parti-
tion the problem into an “odd” portion of siZé&\ + 1) x (N + 1) and an “even” portion of
size(N +2) x (N +2). The odd portion still comes from the odd Chebyshev polynomi
alsTi(x), T3(X), ..., Tonpa2(X) as in the previous problem. Those eigenvalues occurring |
problemM + 1 which also previously occurred in problevh are the recalculation of the
eigenvalues from the subportion of the problem that was unchanged in passinilftom
M + 1. The leap-frogging occurs only for the model problem (1) and does not occur 1
more general eigenvalue problems containing mixed even and odd orders of differentia
(see [9]).

4. THE CHARACTERISTIC POLYNOMIAL AND THE LOWER BOUND
FOR THE POSITIVE EIGENVALUE

We derive a general expression for the characteristic polynomial of the eigenva
problem arising from a range of spectral-tau methods. In particular, we obtain the ct
acteristic polynomials from the Chebyshev—tau method and the Legendre—tau metl
The results will show that a range of spectral methods generate positive (or spuric
eigenvalues, increasing to an infinite eigenvalue from the Legendre—tau method. Profe
Hans Weinberger suggested this derivation of the characteristic polynomial to us and
thank him for his assistance. We can also derive the same characteristic polynomial dire
from determinants of the triangular-Hessenberg form of the matrix generalized eigenve
problem through an intricate sequence of recursion arguments and reductions.

4.1. The Characteristic Polynomial for the General Gegenbauer—Tau Method

Consider the residual problem of the spectral-tau method reduced by parity asin Secti
applied to the model problem (1)

L{u} = u® — su’ = 14 fanp2(X) + 72 fanya(X).

Use the Gegenbauer polynomials as the set of orthogonal polynomials for the tau met
Specifically, we want to choose the coefficients of the even polynantategree A + 4
in such a way that the residual bfu} = u® — su’ (which is an even polynomial of degree
2N + 2) is orthogonal td5g, G5, Gy, ..., G5y . Then the residual will only be a multiple
of Gon -

We write

L{u} = (D? — )D?{u} = (~D? + s){—u"}, ®3)
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whereD is the derivative operator. Becausel” is a polynomial, we use the Neumanr
series for the inverse of the operateD? + s to find that

N+1

—U" = Tong2 Z s IDE Ty, 4)
k=0

This equation has a polynomial solution that satisfies the boundary conditions if and
if the integrals of 1 and ok times the right-hand side are zero. The integrak dimes
the right-hand side is zero by symmetry. Multiplying &Y+ to create a polynomial, the
condition fors to be an eigenvalue is that

N+1

1
) N -1
SN+l/lGZ(N+l)(X) dx+ 2§ :SNH k(GE<N+1>)( ‘=0
- k=1

We will deduce the special limiting case ot 0, reducing to the Chebyshev—-tau charac
teristic polynomial later.
The following lemmas derive the coefficients of the characteristic polynomial explicit

LEMMA 1. Letn>0be an integer and e (—%, 00), v=£0. Then

- o @u—Dr(+2v -1

A complete proofisin [6], or the reader can check the lemma by examining special ce
The proof proceeds by writing the integral in terms of hypergeometric functions and us
hypergeometric function identities.

LEMMA 2. Letn k>0 be integers ana € (—31, c0), v #0, then

k—1
n+k+2v—1 .
=2k< n_k” >||(v+1).
x=1 j=0

dc
g o

A complete proofis in [6].

Notice that if the order of the differentiatiok,is greater than the order of the Gegenbaut
polynomial,n, Lemma 2 will give the correct answer. In this case k < 0 and, since this
term is in the bottom of the binomial coefficient, the binomial coefficient will be zero.

Lemmas 1 and 2 give the characteristic polynomial:

0(s) 2 (F(ZN—i—2v—i—1)(2v—l)>SN+1

T T (2N + 3)!
2k—2

N-+1
o1 (2N + 2k + 2v .
N+1-k~2k—1
sz_ls 2 (2N—2k+3> I,-_IO(U D- ®)

Note that these lemmas do not cover the 0 case, when the Gegenbauer polynomia
are the Chebyshev polynomials. In Lemma 1 there i¥2v) in the denominator of the
formula. Forv =0, I'(2v) has a pole. A naive interpretation would then make the leadi
coefficient of the characteristic polynomial zero formllSimilarly, for v =0 the product
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TABLE I
Sign Analysis on the Leading Coefficient of the Characteristic Polynomial
—%<U<O 0<v<% v:% v>%
I'(2v) Negative Positive Positive Positive
2v—-1 Negative Negative Zero Positive
Leading coefficient Positive Negative Zero Positive

in the formula from Lemma 2 yields 0 because of jhe 0 factor. All coefficients of the
characteristic polynomial would then be 0. To recover the Chebyshev—-tau character
polynomial atv =0 from the general Gegenbauer—tau characteristic polynomial we mu
use a limiting argument.

4.2. Spurious Eigenvalues from the Gegenbauer—Tau Method

We can now use the characteristic polynomial (5) to prove the existence of a spuri
eigenvalue forarange ofs. We will examine the = 0 case corresponding to the Chebyshe\
polynomials of the first kind later (see Section 4.3).

First examine the leading coefficient. Sifde> 0 andv > — % thenl"(2N +2v 4+ 1) > 0.
Table Il completes the sign analysis for the leading coefficient.

The sign analysis on the nonleading coefficients is simpler. The binomial coefficien
always positive sincel? + 2k + 2v > 0. Thej = 0 term of the product determines the sign
of the nonleading coefficient. The nonleading coefficients will be negative%o& v<0
and positive fow > 0.

With these facts we have the following theorem.

THEOREM 1. For —1<v <1

5 5, v#0, the model problem(1) solved using the
Gegenbauer—tau method and reduced by parity to the even portion will have a sin

positive eigenvaluyée. ., where

_ @N)@N+ 20+ 1)@2N + 20 +2)(2N +3)

A
* 1— 42

Proof. First look at the case of Qv < % For this case the leading coefficient is nega-
tive and the nonleading coefficients are all positive.
Define the polynomial

q(s) = 2 <F(2N +2v+1(2v — 1))5,\“_l

T'(2v) (2N + 3)!

2N+2V+2 N 2N+2 2N .
+4v Nt1 )8 +2 (4N+2v+2)H(v+J).
j=0

Note thatq(0) = p(0) and thaig(s) < p(s) for s> 0.
The polynomialg(s) has only one critical point,

CN)CN +2v + 12N +2v +2)(2N + 3)
Sor = 1— 42 ;
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g(sy) is a positive maximum value. Therefogés) has a single root in the right-half line
which is greater thag.

Like q(s) the characteristic polynomial(s) is positive ats = 0 and for sufficiently large
swill be negative. Also, by definitiop(s) > q(s). Therefore, the characteristic polynomial
will have a root greater than the root@f(s), which is, in turn, greater tha®,. Hence, the
Gegenbauer—tau approximation to the solution of the model problem will have an eigenv
A4 such that

~ (@N)(@N +2v + 12N +2v +2)(2N + 3)

It > Sor 1— a2

(6)

The characteristic polynomial has no other roots in the right-half line.

For the case—% < v <0 the characteristic polynomial is simply the negative of th
characteristic polynomial from the first case. Therefore, whénc v < 0, the Gegenbauer—
tau approximation to the solution of the model problem will also have an eigenvalue
such that

_@N)@N 2+ RN+ 20+ 9N+

ot > Sor 1— a2

)

Note that as — i% we haves, — oo and sor, — oo.

4.3. Reduction of the Gegenbauer—Tau Characteristic Polynomial to the Chebyshev—
Characteristic Polynomialy= 0)

Recall the definition of the Chebyshev polynomials in terms of Gegenbauer polynon
[1,2],

Ta(X) = g"i"o G“v(x).

The convergence of the limit in the Gegenbauer polynomial definition of the Chebys
polynomials is uniform [6]. Uniform convergence allows this limit to be interchanged wi
integrals and derivatives.

First calculate the leading coefficient in the limit case,

1 N )
/T2N+2(X)dX=/ 2N2+2Iim 2N+2(X)dx

1 -1 v—>0 v

1t
(N+1 Ilm—/ GonjodX
v—=0 p 1
2
2N +3)2N+1)°

Likewise we can calculate the remaining coefficients.

d2-1 T B ka=—02 ((ZN + 2)2 _ JZ)
T oL 1 2N+2(X) - K—2 ;- .
x=1 iz @i+

d sz—l
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Thus, we can recover the Chebyshev-tau characteristic polynomial from the Gegenba
tau characteristic polynomial.

As in Section 4.2 the Chebyshev—tau approximation to the solution of the model probil
has a spurious positive eigenvalie, such that

Ay > 2N@N + 12N + 2)(2N + 3).

Notice that this is precisely the lower bound found in Theorem 1 with0. We have the
following theorem.

THEOREM2. For —% <v< % the model probler(il) reduced by parity and solved using
the Gegenbauer—tau method will have a single positive eigenvaluevhere

(2N)(2N + 20 + 1)(2N + 2v + 2)(2N + 3)
> .
1-— 42

+

5. MATHEMATICAL REDUCTIONS AND REFORMULATIONS

The usual matrix formulation of the tau method is inconvenient for theoretical analy:
for two reasons. The matricesand B are dense, with a partial “checkerboard” structure
(see [9]). Furthermore, because of the “boundary bordering” (see [4]) the niati$x
singular. The singularity oB requires a partitioning process for the determination of th
eigenvalues; see [9].

In this section, we describe an alternative but equivalent spectral formulation of
problem (1). The alternative formulation results in a nonsingular matrix system with
triangular-Hessenberg structure that is convenient for theoretical analysis.

In the following subsections we briefly describe the steps that lead to the triangul
Hessenberg form. The modifications do not alter the problem or its eigenvalues, but t
do take advantage of various properties to eliminate unnecessary or obscuring informe
from the problem. First, we have already shown in Section 3 how to factor the origir
procedure into odd and even parts, reducing by half the size of the problem to be sol
Next, we show how to automatically incorporate the boundary conditions into the proc
to eliminate the singular rows of the matrix eigenvalue problem. Finally, we show that t
original problem leads to a special triangular-Hessenberg form by using monomial b:
functions, instead of the (equivalent) Chebyshev or Gegenbauer polynomials. It is in
final context that the origin of the spurious eigenvalues is understood.

5.1. Galerkin—Gegenbauer Bases, Monomial Bases, Galerkin—Monomial Bases

Finding a polynomial of degreld + 4 which satisfies the differential equation and bound
ary conditions in the sense of having residual orthogon&@gx), . .., G} (x) approxi-
mately solves the model problem (1). Of course, users most commonly apply this appt
imation with v =0, the Chebyshev polynomials, because the Chebyshev polynomials
optimal in several respects. However, investigation of the spurious eigenvalues reqt
increased generality with the full range of Gegenbauer polynomials.

The boundary conditions imply that the approximating polynomial has a root of mul
plicity 2 atx =1 andx = —1 so(1 — x?)? factors from the polynomial solution. Thus we
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may solve for the approximation in terms of the basis functions,
(1= x*)?GL(x). (8)

This is a “basis recombination” as in [4, Section 6.5]. That is, for the model problem
we are able to recast the Gegenbauer—tau method (or more commonly, the Chebyshe
method) into a Galerkin—Gegenbauer—tau method (see also the discussion of nomenc
in [4, Chap. 18]). The eigenvalues of the system using the Galerkin—Chebyshev basis
tions (8) (withv =0) are the same as the eigenvalues of the system using the Cheby
polynomials and the subsequent reduction (see [9]) with the boundary conditions.
One final theoretical consideration will also simplify the problem. We will use an ev
polynomial incorporating the boundary conditiaiis- x?)? pn (X) = (1— x?)? ZE‘:O ax
as the approximation to the solution of the boundary value problem. This is a “Petr
Galerkin method” (see [4, Chap. 18, p. 598]). This amounts to a change of basis usin
change of basis from the Gegenbauer polynomials to the monomials. We will denote
resulting matrix equation as

L{a=sRia ©)

The superscript indicates the index of the Gegenbauer polynomials used, and the sub
indicates the order of approximation. When itis clear from context, or unnecessary, we
omit the indices. Formulas for the entrieslondR are

LG = 7|@)@j - DEj - @) - 32+ (Jz—jz_—‘li>

—2(2j +2(2j + 1 (2))(2j — 122 (JZ_J 1__2|>

+2j +H2] +32] +22j + D27 (jz_jiﬂ

and

O _ iV(2i — 1222
R =7|2D2j-1)2 (J._l_ -

2l - 2i>—2(2j +2)2) + 272 (.2‘ )
. _ oo 2] 42
2j +4)(2) +32°22
e +aeivazea( 22
for the Chebyshev case, and

w _ w2720 4 2v)
T TO)N@ + D)

x | (2P2] - D2] —2(@2j _3)221+4< 2] —4> F(j+i—1

j—i—=2)T(j+i+v-1
2j—2) C(+i)
j—i—=1)T(+i+v)
2j> rg+i+21 }
j—iJT(+i+v+1)

—2(2] +2)(2] + D)) (2] — 1)2-2“2(

Qi+ D) +32] +2@2) + 1272 (
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and

72220 4 2v)
CW)L(2i + 1)

v)
R =

«|@)@] —1)221+2< 2 -2 > LA+

i —i—1)T(+i+v

, : i 2] L(j+i+1
—22 2)(2 1)2-2 -
@ raed <J—i>r<1+i+u+1)

2l 48 +3)2_2j_2( 2j +2 ) I +i+2)

-1+ T(j+i+v+2

for the general Gegenbauer case.

Note thatL is an upper triangular matrix arid is an upper Hessenberg matrix. This is
another simplification in the problem, since the stand@#ialgorithm for the solution of
generalized eigenvalue problems firstreduces the problemto the triangular-Hessenberg
(which is always possible) and then proceeds to solve the resulting generalized eigeny
problem, [20]. Although the monomial basis is ill-conditioned for numerical computatio
using the monomial basis for reduction to triangular-Hessenberg form does help expos
central point of this theoretical investigation which is the nature and origin of the spuric
eigenvalues.

Increasing the order of approximation fronN2o 2(N + 1) by using the polynomial
(1—x3?? ZI’(\'jol ax adds a column to both andR corresponding to the inner products
of the derivatives of1— x?)x*N*D with G, (x) and a row corresponding to the inner
products of derivatives afl — x?)?x? with G} ,,,(X). This means that as the size of the
approximation increases, the matriteandR need not be completely recalculated. It also
means that for a given degre®l 2f approximation, the principal submatriceslobnd R
contain the lesser degrees of approximation. Both properties are useful for the theore
analysis in this paper.

5.2. The Gegenbauer-Tau Method Yields a Regular Generalized Eigenvalue Problem

For generalized eigenvalue problems, we follow the discussion and notation of [:
Chap. VI]. Fora, g € C considen«, 8) # (0, 0). Then for any complex scala, («, ) def
{y(a, BT : y € C}. Write (L) = (1, 1) and defingoo) = (1, 0).

For vector space¥; andV,, x € V1, and operator®\, B with A, B : V1 — Vs, if

BAX = aBX

for («, B) # (0, 0) andx # 0, then({w, B) is a (generalized) eigenvalue of the péd;, B)
with (right) (generalized) eigenvectgr

The matrix pair(A, B), with both matrices square of the same dimensionsinigular
if for all («, B), det(8 A — aB)=0. Otherwise the pair igegular. If either detA) #£0 or
det(B) £ 0, then the paitA, B) is regular. If the pair oN x N matrices(A, B) is regular,
then there are precisely generalized eigenvalues.

In triangular-Hessenberg form it is simple to show that the matrix generalized eigenva
problem (9) resulting from the Gegenbauer—tau method is regular. Sitités upper
triangular, it suffices to show that the diagonal entries are nonzero. From Section 5.1
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jth diagonal entry of. " is

Cj+v)FWTI'2j+1)

. . . . —2j
@] +42) +3)(2] +2)(2] +1)2 F2itvil)

Thus, there ar®&l + 1 (generalized) eigenvalues for the matrix pair. We may find the eige
values as the roots of the characteristic polynomial

det(L™ — 2R™).

From Section 5.1 we can show that for Legendre polynomials, whef/2, the first
row of the matrixRy /7 is zero (see also Section 5.4). HenBg! 3 is singular, with a rank
of N. Therefore, there is only one linearly independent right null vectoﬁ,&ﬁ. Then

we have

THEOREM 3. The matrix pair(L3, Ry/3) has one infinite generalized eigenvalue
(1,0) = (00).

5.3. Generalized Eigenvalue Perturbation Theory

We use generalized eigenvalue perturbation theory to show thatfor©1 the sys-
tem (9) has an eigenvalue that approagles as the order of approximation increases. W
first need more background from [20].

Let A1) be an(N + 1) x (N + 1) matrix. Define

[Ansp]| = sup €¥17Nja ;.
0<i,j<N

Let (A, B) be a regular matrix pair with simple generalized eigenvatued) and left
and right eigenvectorg andx. Let (A, B) = (A+ E, B+ F) be a regular matrix pair and
a perturbation of A, B) with corresponding generalized eigenvaliie8). Lete = || E|| +
1.

The chordal metrig ((-, -), (-, -)) for generalized eigenvalues is

X (e, B), (7, 8) = led — Py | .
Va2 + 1812/l 2+ 1812
Let (A, B) be a regular pair, and let its eigenvalues(bg, ..., (Ay). Then there is an

ordering(i1), . .., (An) Of the eigenvalues ofA, B) such that
lim x (1), (1)) =0. i=0.....n
(see [20, Theorem 2.1, p. 293]). No eigenvalues are lost in perturbing the original mz
pair for small enough perturbations.
From [20, Theorem 2.2, p. 293] we get
x (@, B), (y" Ax, y" Bx) < O(e?).

For convenience, we will indicate the size of the matrices with a subscript. We will fin
o 1/2 1/2 ;
matrix pair(E, F) so that(LE‘,’\,)H), R&)H)) = (LEN/+)1)+ E(N+1)s R((N/+):I_)+ Fn+1)). We will
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show that L (3{?},, R}/?},) has aninfinite generalized eigenvalae) for eachN. Defining
e=|E| +[IF| as the size of the perturbation as in [20], the matrix pafk/, ;). R\, 1)

will be an O(¢) perturbation o(LE,lﬁ)l), R((ﬁ,/f)l)). If (a, B) is thfzgenerfllzized eigenvalue of
(L{N41- RiNl+1,) corresponding to the infinite eigenvalue(bfy ;). Rix 1) the perturba-

tion Theorem 2.2 of Stewart and Sun gives the asymptotic behavios, 8f.

5.4. Infinite Eigenvalues in the Legendre—Tau Methoe:(1/2)

The first step in proving the existence of spurious eigenvalues for the Gegenbauer:
method is to examine the case w& 1/2 corresponding to Legendre polynomials. For
v =1/2 the Gegenbauer—tau method yields an infinite generalized eigenvalue.

THEOREM1. Let N> 0 be an integer. The matrix pait (2}, Ry -y, is regular and

has a simple infinite generalized eigenvalue.

Proof. From Section 5.2 we know thdiIE,l\{fl) is upper triangular and nonsingular so

the matrix pair is regular.

From Section 5.R&/ﬂ) is upper Hessleznberg ﬁéﬁ,/fl) haf 2rank of at lead\l. Itis easy
to show the elements of the first row Bfy/?}, are zero, s&y/ 7y, is singular and has rank
N [6].

The matrix pair(L {7y, R\ 1) has at least one infinite generalized eigenvalu®).
It is not hard to see that this is a simple generalized eigenvalue. The associated 1
eigenvector of this infinite generalized eigenvalue is a right null vectcRﬁfqﬁfl) andthe null
space oiR&/f)l) is of dimension one. Therefore, the infinite generalized eigenvalue must
simple. m

In Section 5.5 we will need the right and left eigenvectors of the matrix(phai ?1)1
R((ﬁl/ﬂ)) associated with the infinite generalized eigenvalue.

THEOREM2. The left eigenvector alL{y/?,, R} is

Yin+p = (1,0,...,0),
where there are N1 entries in the vector. The right eigenvect®+1), iS

DY TGN -k
PTNSI(IN = DTN AN +3— 2k)

forO<j<N

The proofis in [6, Section 5.3].

Now that we know that the matrix pa(il'_&,/fl), RE,l\,/f)l)) isregular and has a simple infinite
generalized eigenvalue we can use this to show that for a rangs afoundv =1/2 the
Gegenbauer—tau approximation to the solution of the model problem will give a spuric
eigenvalue.

5.5. Perturbation Analysis

With the technical lemmas from Appendix A we can prove that a spurious eigenva
will arise from the application of the Gegenbauer—tau approximation method to the mo

problem for O<v <% and /2 <v <1. From Section 5.3, if a matrix paifA, B) of
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(N +1) x (N +1) matrices is “close” taL {y/ 7y, R\y-1,) then there will be a generalized

eigenvaludan 1), Bn+1)) OF (A, B) that corresponds to the infinite generalized eigenvall

of (L{N7,. RN1). The corresponding eigenvalue is approximately

Hy 1/2) Hp1/2) 2
(@, Bney) = (Y L(N/+1)Xf y R(N/+1)X> + O(e9,

wherey andx are the left and right eigenvectors of the paify ;. Riy>},) ande is

e =|ILiy — '—EH?DH +||RN41) — R&@DH

Using the norm defined in Appendix A and Lemma 3 we can make, for sufficiently la

) 1/2) T ) 1/2)
N, RN,y as close tdR 11, as we want and similarly foc ., ;) andL ().

THEOREM3. LetO<v <1, v+£1/2be given. Letae™, B™) be the generalized eigen-
value of (L{},4,, RiN,1)) that corresponds to the infinite generalized eigenvae =

(1,0) of (L2, RiZy). Then

<a(v) ’B(u)> _ <1 22v —-1D(2v - 3)
' (2N +3)(2N +2)(2N — 2v + 3)(2N + 2v + 2)

> + O(e?),

where

€2 < e N (Ay, + Ay 1) (64N + 64N3 + 192N2 + 104N + 40)%

2
The constant#\y, are defined in Appendix A.

Proof. First, establish the upper bound eh From Lemma 3 we get
LNy || < € N/2P2 AN, (64N + 64N° + 176N? + 80N + 24).
and
R[] < € N2 AN, (16N? + 24N + 16).

Hence,

¢ = ([LiNsy — L[+ IR = RAZL D

< (IRl + ILE2 |+ IR o+ IREE 1)

= e M (An + Ay 2)“(BAN® + 64N® + 192N2 + 104N -+ 40)2.

Recall thatAy,, = (2N + v)T'(v). Thereforeg? — 0 at least afN %N,
Now we can calculate the approximation(tqn.1), Sn+1)). Recall that

(@ BY) = (Y* LN X Y R 1)X) + OCED),
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where the right and left eigenvectors (cbfgﬁ,/fl), R(/2,), x andy, respectively, are given

by Theorem 2. Evaluating and simplifying gives (see [6] for details)

o AB(G - V) @GN+ H@N + 3N +2)@N +1)
Y it T+ D+ D

) _AB@-D(3-v) (N+2@2N +1)
YR T +20+2n '

Therefore, we get
HR(V) X
O 2\ ~ /GH] ) ) Y NNty
(@, BY) ~ (YL Q% YT RN X) = <1’ HL(v) >
YU LiNgpX

Substituting and canceling wherever possible we get

(a®, B ~ <1’ (2v—-D(2v -3 >
(2N +3)(2N +2)(2N — 2v + 3)(2N + 2v + 2)

See [6] for detailsm
This theorem leads to the following results.

THEOREM4. The Chebyshev—tau method applied to the model proktEnwill yield
a positive spurious eigenvalue of magnitude at leagh®).

THEOREMD5. LetO<v <1 be given. The Gegenbauer—tau approximation to the mod
problem(1) will yield

1. a positive spurious eigenvalue fox< v < 1/2,
2. aninfinite generalized eigenvalue foe=1/2,
3. a negative spurious eigenvalue fbf2 <v <1

for all truncation orders.

6. INFINITE EIGENVALUES IN THE LEGENDRE-TAU METHOD

This section explains how the boundary conditions act together with the Legendre-
method to allow the existence of an infinite eigenvalue. The Gegenbauer—tau methoc
values ofv near the Legendre case=1/2 will have an eigenvalue that is a perturbation
of the infinite eigenvalue. For 8 v < 1/2 the perturbation moves the infinite eigenvalue
into the regime where it is positive. Fofd< v < 1 the perturbation moves the eigenvalue
into the regime where it is negative. The origin of the infinite eigenvalue in the Legend
tau method together with the perturbation theory for generalized eigenvalues explains
origin of the spurious eigenvalues.

We need to show that the Legendre—tau method of all orders applied to the model prok
(1) yields an infinite generalized eigenvalue. For a given okiler4 an infinite generalized
eigenvalue would be the paft 1), Bin+1)) = (1, 0) for which there is a polynomial of
degreeN + 4 whose residual for the model problem

BD* = oD%
u=1) =u@d) =u(=1) =u) =



ORIGIN AND NATURE OF SPURIOUS EIGENVALUES 457

is orthogonal to the Legendre polynomi&gx), ... Py (X). As in Section 5.1, because we
seek polynomial solutions we may incorporate the boundary conditions directly into
equation

N
-D? ( > a1 - x*?P, (x)) = 7Py 2(X).

j=0

We can rescale and slightly simplify the problem by dividing through-yand incorpo-
rating it into the unknown coefficients .

To simplify and eliminate the consideration of cases, consider only Ever2M. Solve
by expanding in the linearly independent even Legendre polynomials as basis funct
Equation (6) is now rewritten as

M
> " a;D?[(1 - x2)2Py; ()] = Pu2(x).
j=0

Now expand the polynomid?[(1 — x?)2P; (x)] in even Legendre polynomials as

j+1
D?[(1 - x*?P(x)] = > KjkPa(x).
k=0
From the orthogonality relation, the coefficietts fork=0, ..., j + 1 are
2k +1 [+t
Kik= —— D?[(1 — x?)%P%j (X)] Pa(X) dx.

-1

Integrating by parts twice and rearranging, the coefficients are

2k +1 [+t ,
Kik= — /., P2j (X) (1 — x%)? Py (x) dx.

For a givenj, by orthogonality only the even Legendre polynomi&ig(x) of degrees
2j + 2, 2j,and 3 — 2 can contribute nonzero terms. That is,

D?[(1 = x*)2Pj (X)] = K,j—1P2j—2(X) + K| j P2j (X) + K j+1Paj1+2(X)

Using thisinformation, we must show thé + 2 equations in th& + 1 unknownsy . . . ay
generated from (6) by equating coefficientsRafx), k = 0, ..., M + 1 on left and right
are consistent.

The first of these equations, equating coefficientBs§k), would have all coefficients 0.
The equation from the coefficients fé%, k=1,..., M — 1, will involve ax_1, ax, ak1.
Finally, the equation from the coefficients®fy, .o will only involve ay; . Clearly, the system
is tridiagonal. The rank of the coefficient matrixé + 1, and the rank of the augmented
matrix is alsoM + 1. The system is consistent and there is a solution. The implicatior
that the Legendre—tau method allows an infinite eigenvalue.

The Legendre polynomials can be expressed by the Rodriguez formula [1]

(_1)1' di

.
j12] g E—X

Pj X) =
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The Rodriguez formula for the Gegenbauer polynomials is, for comparison,

G(U)(X) _ 1 i[(l_ X2)U—l/2(1_ XZ)J]
: g (1—x2)v-l2dxi ’

where the normalizing constagtis in [1, Eq. (22.11.2), p. 785].
Using the Rodriguez formula in (6), we want to show that

d2 N - dj (_l)] ~ dN+2 (_1)N+2 PNi2
W(Z;aj(l_x) axi jizr ) = g e X0 (10)
j=

has a solution. Of course, from the argument in the previous paragraph, we know that
has a solution. The expression in terms of the Rodriguez expansion makes it plausible t
solution exists. It is plausible that solution wouldt exist for the Gegenbauer polynomials
because the derivatives of the tefht- x2)"~¥/2 in the denominator and under the derivative
will introduce terms which cannot be matched on the right side of the expression.

The expansion in terms of the Rodriguez formula explains why the Legendre—tau spe
method has an infinite eigenvalue for the boundary-value problem (1). The similarity of 1
boundary conditions to the form of the Legendre polynomial solution permits a soluti
where none would ordinarily be expected. For the Gegenbauer polynomials, the boun
conditions do not match the form of the basis polynomials because of the presence o
term (1 — x?)"~ 12 in the Rodriguez formula.

7. CONCLUSIONS

In prior sections, we have an explanation for the origin and a description of the nat
of the spurious eigenvalues in spectral methods for a differential eigenvalue problem
particular, we have an explanation for the widely reported positive spurious eigenval
in the Chebyshev—tau method. The analysis of the spurious eigenvalues was in tern
a simplified model problem; a problem that is simple enough to have an explicit soluti
to validate the spectral methods, yet still contains the essence of more general probls
Many other investigators have used the model problem as an example of the use of spe
methods. Finally, the model problem occurs naturally in the investigation of some flt
dynamics problems. From that analysis we observe that:

1. The model problem factors into odd and even problems, each generating a spur
eigenvalue. The factoring simplifies the analysis but is not essential to the analysis.

2. The popular Chebyshev—tau and Legendre—tau methods are each instances in a f
of spectral methods using the Gegenbauer polynon@&éx), as basis functions.

3. One member of the family of Gegenbauer—tau methods, namely the Legendre-
method when =1/2, applied to the model problem has an infinite eigenvalue in the sen
of generalized eigenvalue theory.

4. Positive spurious eigenvalues occurring fer 0 < 1/2 are approximations to infinite
eigenvalues in a generalized eigenvalue problem ferl/2.

5. Large magnitude negative eigenvalues occur wh@xl < 1, prompting us to en-
large the definition of spurious eigenvalues to include all large-magnitude eigenvalues
are perturbations of an infinite eigenvalue, regardless of sign.
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However, note that our enlarged sense of spurious eigenvalues does not emphasi
potential effect of the spurious eigenvalues on a dynamic calculation based on a spe
tau formulation. If a time-dependent version of a problem with spurious eigenvalues v
integrated in time, there is a large difference between problems with positive and n
tive spurious eigenvalues. Positive spurious eigenvalues are catastrophic to the calcul
leading to erroneous blowup of the solution in time, whereas negative spurious eigenvz
are innocuous. A family of related spectral methods can produce both positive and neg
spurious eigenvalues, so users must be aware how results can change as the method is

6. The boundary conditions, when incorporated into a polynomial solution, match
form of the Legendre polynomials. The similarity of the boundary conditions to the fo
of the Legendre polynomials permits the infinite eigenvalue.

7. Spurious eigenvalues from the Gegenbauer—tau method grow at least as fast as

(2N)@2N + 20 + 1)2N + 2v + 2)2N + 3)
1-— 42

in the truncation ordeN. In particular, the spurious eigenvalues from the Chebyshev—t
method are larger thai2N)(2N + 1)(2N + 2)(2N + 3).

For a schematic diagram of the results, consider the Legendre—tau method on the r
problem with infinite eigenvalues (along with good approximations to the true eigens
ues) as a point in a space of approximation methods. Other approximation method
perturbations away from this point. These perturbations change the infinite eigenvalu
perturbing it away from infinity into the positive eigenvalue regime. Some other spec
methods that are seldom used perturb the eigenvalue into the negative eigenvalue re
Ad hocmethods for removing spurious eigenvalues may change either the problem o
method for the Chebyshev—tau method, perturbing the large eigenvalues into the nec
eigenvalue regime. We intend further research to make this precise with perturbation re
from generalized eigenvalue theory.

Finally, we observe that a now established diagnostic tool for use in showing th:
problem has eigenvalues that are approximations to infinite eigenvalues (i.e., are spul
is to observe the growth rate for dominant eigenvalues computed with truncationigrde
in the spectral series. If the magnitude of the eigenvalue grows fasteNthan~ 3 or 4,
it is probably spurious in the sense we have explained in this paper.

APPENDIX A: DEFINITION OF THE MATRIX NORM

This section contains several facts for the generalized eigenvalue analysis. All proof
technical and are omitted. Detailed proofs are in [6].

The first detail is the definition of the matrix norm defining the size of the perturbati
€ in Section 5.3. Le®\1) be an(N + 1) x (N + 1) matrix. Then define

|Anin|| = sup eti=Njg .
0<i,j<N
It is easy to show that this is indeed a norm.

The rest of this section consists of technical lemmas that will help with the analysi
Section 5.5. These lemmas, while important to the analysis, detract from the actual ana
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The next lemma gives an upper bound on the norm of the mattifigs,) and Ry, ;,
under the norm defined in this section.

LEMMA 3. Letv >0 be given. Then
LS 0| < € V/2r2Ay , (64N + 64N3 + 176N2 + 8ON + 24)
and
RNy || < € N2 2 Ay, (16N? + 24N + 16)

where
1, v=20,
A= {(2| + W), v#£0.

The last two lemmas in this section will be used in Section 5.5 to estimate perturt
eigenvalues. The first lemma gives the evaluations of several summations.

LEMMA 4. Let N > 0be an integer. Then

1.
XNZ 272 2)! (- Mo "@N =k | AG =)y
TG +v+228 TN = DI EN +3- 20 | T+ + 28]
2.
EN: j2- 4@ (-pN- BTN — k)
= [ TG +v+228 '(N—J)'Hko Y4N +3-2k)
_ ANZ+3N) (G —v)y
G-V TO+20+2n
3.
ZN: 272 2j)! (=DM MNATTeN -k | AG-v)y
J i!F(i+v+1)2N—i<N—j)!nk=0 YWN+3-2k| TO+DO+DN’
4,
EN: j2-212j)1 (=N~ NN — k)
= [ TG+v+D28 J(N—J)'Hko Y@4N +3-2k)
_ ANNZ4EN) (3 —v),
BV FO+DO+Dn’
5.

N .22721-(2].)'( 1)N7j 2N —2j— 1(2N )
2 | TrG v+ b2v TN = DIV S @N + 3— 26)

A(NZ+3N) (5 - v), <1+ (N—l)(N+%)>’

- v) L@+ D+ Dy (5 —v)

j=0
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where

B (2N)!
2NN 4N 43— 2K)

The last lemma in this section gives simplified formulasméfﬁ and LE{} forv >0

LEMMA 5. Let N> Obe aninteger0 < j < N andv > Othen

272 2))! .
(v)
=B @2v—-1)— " (((2v-3)] — 2
¥ ( )1!F(1+u+2)((( )] —2)
2721 (2j)! . .
LY = By—— " ((16v2 — 96v + 140) j2 — (16v% — 100)j + 24),
o) J!F(J+v+1)(( 017 = ( 0j+24
where
B, — 2, v =0,
vI'(v), v#D0.
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