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The Chebyshev–tau spectral method for approximating eigenvalues of boundary
value problems may produce spurious eigenvalues with large positive real parts,
even when all true eigenvalues of the problem are known to have negative real
parts. We explain the origin and nature of the “spurious eigenvalues” in an ex-
ample problem. The explanation will demonstrate that the large positive eigenval-
ues are an approximation of infinite eigenvalues in a nearby generalized eigenvalue
problem. c© 1998 Academic Press
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1. INTRODUCTION

Spectral methods of numerical solution for some differential eigenvalue problems, in-
cluding hydrodynamic stability problems may produce a set of “spurious eigenvalues”
along with approximations to the true eigenvalues. An extensive literature that includes the
early work of [11] and later in [3, 5, 9, 16, 21, 24, 25] documents this phenomenon. The
intent of the present paper is to uncover the nature and origin of these “spurious eigen-
values” in the context of a typical model problem, proving that they exist at all orders
of truncation in the Chebyshev–tau method, proving that “spurious eigenvalues” exist at
all orders of truncation in a range of associated spectral methods, establishing how they
behave under increases in truncation order for a range of spectral approximation methods,
and explaining why they arise. Several authors have asserted that the spurious eigenvalues
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are a consequence of the “discretization” of the problem, while other authors have stated
that the reason for the occurrence of the spurious eigenvalues is unknown. Our explanation
will show that the spurious eigenvalues are an approximation of infinite eigenvalues in a
generalized eigenvalue problem from a “nearby” Legendre spectral approximation of the
boundary value problem. Our explanation of the origin of the spurious eigenvalues gives
a reasonad hocmethods for eliminating the spurious eigenvalues work. Thus, this paper
should give users of the Chebyshev–tau method, one of several spectral methods available,
guidance in the method’s use for approximating eigenvalues.

Previous authors usually define “spurious eigenvalues” as the positive or unstable eigen-
values when it is obvious that positive eigenvalues are not eigenvalues of the model problem
under investigation. Here we show that some negative eigenvalues arising from thead hoc
methods for eliminating spurious eigenvalues share perturbation and growth characteris-
tics with the spurious eigenvalues from the direct Chebyshev–tau method. This provides a
clue about the nature and origin of the “spurious eigenvalues” as approximations of infinite
eigenvalues in a generalized eigenvalue problem and permits a generalized definition of
spurious eigenvalues.

The Chebyshev–tau method and other spectral methods applied to the model problem
lead to a generalized eigenvalue problem of the formAx = λBx. Stewart and Sun [20] have
a complete theory for generalized eigenvalues that we use extensively. A more symmetric
form of the generalized eigenvalue problem isβ Ax = αBx, where a pair of complex numbers
α, β with ratio λ = α/β becomes a generalized eigenvalue. More precisely, since pairs of
complex numbersα, β with common ratioλ represent the same eigenvalue, lines through
the origin in the complex planeC2 represent generalized eigenvalues. More simply, lines
through the origin correspond to points on the unit circle. For the model problem we
consider it is simpler yet, since we can takeα, β to be real numbers, and so we can picture
the generalized eigenvalues as points on the unit circle inR2. The important point to notice
now is that if B has a nontrivial null-space whileA is nonsingular, thenα = 1, β = 0 is a
generalized eigenvalue. This pair(1, 0) is an “infinite eigenvalue.” The point(1, 0) now
acts as a “point at infinity.” Perturbations can then move the eigenvalue into either the upper
half-plane, or the lower half-plane, resulting in respectively a large-magnitude positive or
negative ratio; see the schematic diagrams in Fig. 1.

Aside from the spurious eigenvalues, the Chebyshev–tau method computes the remaining
eigenvalues accurately and efficiently, accounting for the method’s popularity and utility.

FIG. 1. Schematic diagram of perturbations of generalized eigenvalues.
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The practical effect of the existence of “spurious eigenvalues” is to cast doubt on results
obtained from the application of the Chebyshev–tau method to a stability analysis of a
flow or structure. If positive eigenvalues, indicating exponential growth of a disturbance,
are really spurious then the analyst may conclude incorrectly that the system is unstable.
It is important to either alter the method to not compute spurious modes or to identify
spurious modes so that they can be ignored in the analysis. Works addressing elimination
of spurious modes include [9, 13, 16, 25] and those that simply state that spurious modes
were computed and then ignored include [3, 22, 24]. The perturbation results in this paper
give a more effective means of identifying spurious eigenvalues through their growth in
magnitude as a function of truncation order.

We begin in Section 2 by defining the model problem that guides the explanation of the
spurious eigenvalues in the spectral–tau method. Section 3 describes a parity reduction of the
problem that simplifies later work. In Section 4 we then derive the characteristic polynomial,
first in the Chebyshev–tau case, then in the more general Gegenbauer–tau case. This allows
us to determine the sign and growth of the largest magnitude eigenvalues for the entire range
of tau methods. Section 5 starts with a reduction to an equivalent basis of monomials instead
of Gegenbauer polynomials to reduce the matrices to standard triangular-Hessenberg form.
We can then apply the theory for generalized eigenvalues to show the model problem has
an infinite generalized eigenvalue. For the related Gegenbauer–tau spectral methods, we
show there is a generalized eigenvalue that is a perturbation of the infinite eigenvalue. We
determine the size of the perturbation and find that it matches the growth of the magnitude
of the eigenvalues from the characteristic polynomial method derived previously. Section 6
gives the explanation of the origin of infinite generalized eigenvalue in the Legendre–tau
method. The boundary conditions and the form of the Legendre polynomials coincide,
permitting the existence of a special solution corresponding to the infinite eigenvalue.
Finally, we present some conclusions based on this paper’s results. Some background facts
are in an appendix.

2. THE MODEL PROBLEM AND THE TAU METHOD

We will consider the model problem

u(4) = su′′, −1 < x < 1,

u(−1) = u(1) = u′(−1) = u′(1) = 0
(1)

for the occurrence of spurious eigenvalues when applying the Chebyshev–tau method to
boundary value problems. The model problem occurs in [11, pp. 143–144] from a separation
of variables applied to a one-dimensional model of the vorticity-streamfunction equations
for low Reynolds number incompressible flow. This model problem is also considered in
[9, 13, 16].

A similar boundary value problem occurs in hydrodynamic stability analysis in spherical
coordinates,

D2u = sDu, r1 < r < r2,

u(r1) = u(r2) = u′(r1) = u′(r2) = 0,
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where the second-order differential operator,

Du = u′′(r ) + 2

r
u′ − l (l + 1)u

r 2
,

occurs, instead of the second-derivative operator. The operatorD arises from the spectral
decomposition of the Laplacian in spherical coordinates. This problem also has spurious
eigenvalues when applying the Chebyshev–tau method. See [9, 10, 23] for details. The
structural similarity to the model problem (1) is obvious.

Another example is the Orr–Sommerfeld stability equation for plane Poiseuille flow[
u(4) − 2α2u′′ + α4u

]/
(−i αR) + [(U − s)(u′′ − α2u) − U ′′u] = 0, −1 < x < 1,

with boundary conditions

u(−1) = u(1) = u′(−1) = u′(1) = 0,

whereu is the amplitude of the velocity disturbance,α is the wavenumber,R is the Reynolds
number, the stability parameter for this problem, andU (x) = 1− x2 is the known steady base
flow whose stability is being examined. It is important to know the value ofR, where at least
one eigenvalue first has a positive imaginary part asR is increased from zero, because for this
eigenvalue the disturbance will grow exponentially in time, instead of being damped out. For
more details see [9, 17, 24]. In this problem, [u(4) − 2α2u′′ + α4u]/(−i αR) is a fourth-order
differential operator and [(U − s)(u′′ − α2u) −U ′′u] is a second-order differential operator.
The structural similarity to the model problem (1) is also obvious. Using the Chebyshev–
tau spectral method produces two spurious eigenvalues with large positive imaginary parts;
these spurious eigenvalues are clearly recognized by the large magnitudes of the values of
at least one of the tau coefficients (see [9] for details).

The eigenvalues of the model problem (1) are all negative and satisfy eithers= −n2π2

or tan(
√−s) = √−s. The first five eigenvalues are (numerically)

s1 = −π2 ≈ −9.869604401

s2 ≈ −20.19072856

s3 = −4π2 ≈ −39.47841760 (2)

s4 ≈ −59.67951594

s5 = −9π2 ≈ −88.826439612.

The corresponding eigenfunctions are respectively

1 + (−1)n+1 cos(nπx)

and

−√−scos(
√−sx) + sin(

√−sx).

Lanczos [14, 15] first proposed the tau method as a means of solving boundary value
problems without requiring basis functions to satisfy the boundary conditions. Fox [7, 8]
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TABLE I

Eigenvalues, Including Spurious Eigenvalues, for the Model Problem (1) Computed

with the Chebyshev–Tau Method

N 1 2 3 4 5 6

Eigenvalues 40 251.453 529.388 1331.132 2284.474 4272.17
12 40. 251.453 529.388 1331.132 2284.47

−11.453 −11.453 −9.892 −9.892 −9.870
−25.388 −25.388 −20.338 −20.338

−61.239 −61.239 −40.663
−104.136 −104.136

−189.638

later extensively developed its use with Chebyshev polynomials. Ortiz [18] extended the
method with the use of canonical polynomials. Orszag [17] applied and advocated the
Chebyshev–tau method for a wide variety of problems. See [9] for an example of applying
the tau method to the model problem (1). Boyd [4, Chap. 18] has a useful and interesting
overview of the history and philosophy of the tau method.

The tau method uses a truncated series expansion in a complete set of orthogonal func-
tions as an approximation for the solution of an ordinary differential equation. We will
use the family of Gegenbauer (or ultraspherical) polynomials as the complete orthonormal
set of functions. The family of Gegenbauer polynomials include the Legendre polynomi-
als and Chebyshev polynomials of the first and second kind as special cases. Chebyshev
polynomials work well for this approximation technique because of their nearly optimal
uniform approximation of continuous functions, their orthogonality and completeness, and
other extremal properties [19]. In certain cases, the Chebyshev expansion is optimal among
all expansions in terms of Gegenbauer polynomials (see [19] for a precise statement). This
optimality accounts for the common use of Chebyshev polynomials for numerical approx-
imations of all kinds.

Table I gives the eigenvalues from the various orders of Chebyshev–tau approximation
of the boundary value problem (1). Note that two large positive eigenvalues result from the
calculations and that they increase as the order of approximation increases. The negative
eigenvalues appear to be converging to the values (2) of the boundary value problem (1). Note
also that the eigenvalues “leap-frog,” that is, the largest eigenvalue in columnN becomes
the second largest positive eigenvalue in columnN + 1. Likewise the least eigenvalue in
column N becomes the next-to-least eigenvalue in columnN + 1. An abridged table of
eigenvalues for higher truncation orders is given in [11, 16]. The entry forN = 6, common
to the table above and to [11, 16], agree. However, the interest here is not in extending the
table to high orders of approximation, but rather to explain the origin and nature of the two
large positive eigenvalues that are spurious for the boundary value problem (1).

3. PARITY REDUCTION OF THE PROBLEM

The parity of the model problem (1) allows a reduction of the problem for theoretical
purposes that exposes the more important and interesting phenomenon of the spurious
eigenvalues in a clearer fashion. Recall that odd index Gegenbauer polynomials are odd
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polynomials and even index Gegenbauer polynomials are even [12, 19] for all values of
the parameterν. Since the derivatives in (1) are of even order, any odd index Gegenbauer
polynomial inserted into the differential equation will remain odd after differentiations.
This has the effect of partitioning the problem into odd and even portions. Such a parity
reduction is common in spectral methods (see [4, Chap. 7]). It will suffice to examine only
one subportion, say, the even portion of the problem.

Application of this reduction to the Chebyshev–tau method explains the “leap-frogging”
of eigenvalues observed in Section 2. For, say,M odd, M = 2N + 1, the problem (1)
factors into an “odd” equation of size(N + 1) × (N + 1) and an “even” equation of size
(N + 1) × (N + 1). The odd portion comes from the odd Chebyshev polynomialsT1(x),

T3(x), . . . , T2N+1(x). Increasing the size of the approximation toM + 1, we would parti-
tion the problem into an “odd” portion of size(N + 1) × (N + 1) and an “even” portion of
size(N + 2) × (N + 2). The odd portion still comes from the odd Chebyshev polynomi-
alsT1(x), T3(x), . . . , T2N+1(x) as in the previous problem. Those eigenvalues occurring in
problemM + 1 which also previously occurred in problemM are the recalculation of the
eigenvalues from the subportion of the problem that was unchanged in passing fromM to
M + 1. The leap-frogging occurs only for the model problem (1) and does not occur for
more general eigenvalue problems containing mixed even and odd orders of differentiation
(see [9]).

4. THE CHARACTERISTIC POLYNOMIAL AND THE LOWER BOUND

FOR THE POSITIVE EIGENVALUE

We derive a general expression for the characteristic polynomial of the eigenvalue
problem arising from a range of spectral–tau methods. In particular, we obtain the char-
acteristic polynomials from the Chebyshev–tau method and the Legendre–tau method.
The results will show that a range of spectral methods generate positive (or spurious)
eigenvalues, increasing to an infinite eigenvalue from the Legendre–tau method. Professor
Hans Weinberger suggested this derivation of the characteristic polynomial to us and we
thank him for his assistance. We can also derive the same characteristic polynomial directly
from determinants of the triangular-Hessenberg form of the matrix generalized eigenvalue
problem through an intricate sequence of recursion arguments and reductions.

4.1. The Characteristic Polynomial for the General Gegenbauer–Tau Method

Consider the residual problem of the spectral–tau method reduced by parity as in Section 3
applied to the model problem (1)

L{u} = u(4) − su′′ = τ1 f2N+2(x) + τ2 f2N+4(x).

Use the Gegenbauer polynomials as the set of orthogonal polynomials for the tau method.
Specifically, we want to choose the coefficients of the even polynomialu of degree 2N + 4
in such a way that the residual ofL{u} = u(4) − su′′ (which is an even polynomial of degree
2N + 2) is orthogonal toGν

0, Gν
2, Gν

4, . . . , Gν
2N . Then the residual will only be a multiple

of Gν
2N+2.

We write

L{u} = (D2 − s)D2{u} = (−D2 + s){−u′′}, (3)
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whereD is the derivative operator. Because−u′′ is a polynomial, we use the Neumann
series for the inverse of the operator−D2 + s to find that

−u′′ = τ2N+2

N+1∑
k=0

s−k−1D2kT2(N+1). (4)

This equation has a polynomial solution that satisfies the boundary conditions if and only
if the integrals of 1 and ofx times the right-hand side are zero. The integral ofx times
the right-hand side is zero by symmetry. Multiplying bysN+2 to create a polynomial, the
condition fors to be an eigenvalue is that

sN+1
∫ 1

−1
Gν

2(N+1)(x) dx + 2
N+1∑
k=1

sN+1−k
(
Gν

2(N+1)

)(2k−1)
(1) = 0.

We will deduce the special limiting case ofν = 0, reducing to the Chebyshev–tau charac-
teristic polynomial later.

The following lemmas derive the coefficients of the characteristic polynomial explicitly.

LEMMA 1. Let n≥ 0 be an integer andν ∈ (− 1
2, ∞), ν 6= 0. Then

∫ 1

−1
Gν

n(x) dx = [(−1)n + 1]
(2ν − 1)0(n + 2ν − 1)

(n + 1)! 0(2ν)
.

A complete proof is in [6], or the reader can check the lemma by examining special cases.
The proof proceeds by writing the integral in terms of hypergeometric functions and using
hypergeometric function identities.

LEMMA 2. Let n, k ≥ 0 be integers andν ∈ (− 1
2, ∞), ν 6= 0, then,

dk

dxk
Gν

n(x)

∣∣∣∣
x=1

= 2k

(
n + k + 2ν − 1

n − k

) k−1∏
j =0

(ν + j ).

A complete proof is in [6].
Notice that if the order of the differentiation,k, is greater than the order of the Gegenbauer

polynomial,n, Lemma 2 will give the correct answer. In this casen − k < 0 and, since this
term is in the bottom of the binomial coefficient, the binomial coefficient will be zero.

Lemmas 1 and 2 give the characteristic polynomial:

p(s) = 2

0(2ν)

(
0(2N + 2ν + 1)(2ν − 1)

(2N + 3)!

)
sN+1

+ 2
N+1∑
k=1

sN+1−k22k−1

(
2N + 2k + 2ν

2N − 2k + 3

) 2k−2∏
j =0

(ν + j ). (5)

Note that these lemmas do not cover theν = 0 case, when the Gegenbauer polynomials
are the Chebyshev polynomials. In Lemma 1 there is a0(2ν) in the denominator of the
formula. Forν = 0, 0(2ν) has a pole. A naive interpretation would then make the leading
coefficient of the characteristic polynomial zero for alln. Similarly, for ν = 0 the product
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TABLE II

Sign Analysis on the Leading Coefficient of the Characteristic Polynomial

− 1
2
< ν < 0 0< ν < 1

2
ν = 1

2
ν > 1

2

0(2ν) Negative Positive Positive Positive
2ν − 1 Negative Negative Zero Positive
Leading coefficient Positive Negative Zero Positive

in the formula from Lemma 2 yields 0 because of thej = 0 factor. All coefficients of the
characteristic polynomial would then be 0. To recover the Chebyshev–tau characteristic
polynomial atν = 0 from the general Gegenbauer–tau characteristic polynomial we must
use a limiting argument.

4.2. Spurious Eigenvalues from the Gegenbauer–Tau Method

We can now use the characteristic polynomial (5) to prove the existence of a spurious
eigenvalue for a range ofν’s. We will examine theν = 0 case corresponding to the Chebyshev
polynomials of the first kind later (see Section 4.3).

First examine the leading coefficient. SinceN ≥ 0 andν >− 1
2, then0(2N + 2ν + 1) > 0.

Table II completes the sign analysis for the leading coefficient.
The sign analysis on the nonleading coefficients is simpler. The binomial coefficient is

always positive since 2N + 2k + 2ν > 0. The j = 0 term of the product determines the sign
of the nonleading coefficient. The nonleading coefficients will be negative for−1

2 < ν < 0
and positive forν > 0.

With these facts we have the following theorem.

THEOREM 1. For − 1
2 < ν < 1

2, ν 6= 0, the model problem(1) solved using the
Gegenbauer–tau method and reduced by parity to the even portion will have a single
positive eigenvalue, λ+, where

λ+ >
(2N)(2N + 2ν + 1)(2N + 2ν + 2)(2N + 3)

1 − 4ν2
.

Proof. First look at the case of 0< ν < 1
2. For this case the leading coefficient is nega-

tive and the nonleading coefficients are all positive.
Define the polynomial

q(s) = 2

0(2ν)

(
0(2N + 2ν + 1)(2ν − 1)

(2N + 3)!

)
sN+1

+ 4ν

(
2N + 2ν + 2

2N + 1

)
sN + 22N+2(4N + 2ν + 2)

2N∏
j =0

(ν + j ).

Note thatq(0) = p(0) and thatq(s) < p(s) for s> 0.
The polynomialq(s) has only one critical point,

scr = (2N)(2N + 2ν + 1)(2N + 2ν + 2)(2N + 3)

1 − 4ν2
;
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q(scr) is a positive maximum value. Thereforeq(s) has a single root in the right-half line
which is greater thanscr.

Like q(s) the characteristic polynomialp(s) is positive ats= 0 and for sufficiently large
swill be negative. Also, by definition,p(s) > q(s). Therefore, the characteristic polynomial
will have a root greater than the root ofq(s), which is, in turn, greater thanscr. Hence, the
Gegenbauer–tau approximation to the solution of the model problem will have an eigenvalue
λ+ such that

λ+ > scr = (2N)(2N + 2ν + 1)(2N + 2ν + 2)(2N + 3)

1 − 4ν2
. (6)

The characteristic polynomial has no other roots in the right-half line.
For the case− 1

2 < ν < 0 the characteristic polynomial is simply the negative of the
characteristic polynomial from the first case. Therefore, when− 1

2 < ν < 0, the Gegenbauer–
tau approximation to the solution of the model problem will also have an eigenvalueλ+
such that

λ+ > scr = (2N)(2N + 2ν + 1)(2N + 2ν + 2)(2N + 3)

1 − 4ν2
. (7)

Note that asν → ± 1
2 we havescr → ∞ and soλ+ → ∞.

4.3. Reduction of the Gegenbauer–Tau Characteristic Polynomial to the Chebyshev–Tau
Characteristic Polynomial (ν = 0)

Recall the definition of the Chebyshev polynomials in terms of Gegenbauer polynomials
[1, 2],

Tn(x) = n

2
lim
ν→0

Gν
n(x)

ν
.

The convergence of the limit in the Gegenbauer polynomial definition of the Chebyshev
polynomials is uniform [6]. Uniform convergence allows this limit to be interchanged with
integrals and derivatives.

First calculate the leading coefficient in the limit case,

∫ 1

−1
T2N+2(x) dx =

∫ 1

−1

2N + 2

2
lim
ν→0

Gν
2N+2(x)

ν
dx

= (N + 1) lim
ν→0

1

ν

∫ 1

−1
Gν

2N+2 dx

= − 2

(2N + 3)(2N + 1)
.

Likewise we can calculate the remaining coefficients.

d2k−1

dx2k−1
T2N+2(x)

∣∣∣∣
x=1

=
∏2k−2

j =0

(
(2N + 2)2 − j 2

)∏2k−2
j =0 (2 j + 1)

.
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Thus, we can recover the Chebyshev–tau characteristic polynomial from the Gegenbauer–
tau characteristic polynomial.

As in Section 4.2 the Chebyshev–tau approximation to the solution of the model problem
has a spurious positive eigenvalue,λ+, such that

λ+ > 2N(2N + 1)(2N + 2)(2N + 3).

Notice that this is precisely the lower bound found in Theorem 1 withν = 0. We have the
following theorem.

THEOREM2. For − 1
2 < ν < 1

2 the model problem(1) reduced by parity and solved using
the Gegenbauer–tau method will have a single positive eigenvalue, λ+, where

λ+ >
(2N)(2N + 2ν + 1)(2N + 2ν + 2)(2N + 3)

1 − 4ν2
.

5. MATHEMATICAL REDUCTIONS AND REFORMULATIONS

The usual matrix formulation of the tau method is inconvenient for theoretical analysis
for two reasons. The matricesA andB are dense, with a partial “checkerboard” structure
(see [9]). Furthermore, because of the “boundary bordering” (see [4]) the matrixB is
singular. The singularity ofB requires a partitioning process for the determination of the
eigenvalues; see [9].

In this section, we describe an alternative but equivalent spectral formulation of the
problem (1). The alternative formulation results in a nonsingular matrix system with a
triangular-Hessenberg structure that is convenient for theoretical analysis.

In the following subsections we briefly describe the steps that lead to the triangular-
Hessenberg form. The modifications do not alter the problem or its eigenvalues, but they
do take advantage of various properties to eliminate unnecessary or obscuring information
from the problem. First, we have already shown in Section 3 how to factor the original
procedure into odd and even parts, reducing by half the size of the problem to be solved.
Next, we show how to automatically incorporate the boundary conditions into the process
to eliminate the singular rows of the matrix eigenvalue problem. Finally, we show that the
original problem leads to a special triangular-Hessenberg form by using monomial basis
functions, instead of the (equivalent) Chebyshev or Gegenbauer polynomials. It is in this
final context that the origin of the spurious eigenvalues is understood.

5.1. Galerkin–Gegenbauer Bases, Monomial Bases, Galerkin–Monomial Bases

Finding a polynomial of degreeN + 4 which satisfies the differential equation and bound-
ary conditions in the sense of having residual orthogonal toGν

0(x), . . . , Gν
N(x) approxi-

mately solves the model problem (1). Of course, users most commonly apply this approx-
imation withν = 0, the Chebyshev polynomials, because the Chebyshev polynomials are
optimal in several respects. However, investigation of the spurious eigenvalues requires
increased generality with the full range of Gegenbauer polynomials.

The boundary conditions imply that the approximating polynomial has a root of multi-
plicity 2 at x = 1 andx = −1 so(1− x2)2 factors from the polynomial solution. Thus we
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may solve for the approximation in terms of the basis functions,

(1 − x2)2Gν
k(x). (8)

This is a “basis recombination” as in [4, Section 6.5]. That is, for the model problem (1)
we are able to recast the Gegenbauer–tau method (or more commonly, the Chebyshev–tau
method) into a Galerkin–Gegenbauer–tau method (see also the discussion of nomenclature
in [4, Chap. 18]). The eigenvalues of the system using the Galerkin–Chebyshev basis func-
tions (8) (withν = 0) are the same as the eigenvalues of the system using the Chebyshev
polynomials and the subsequent reduction (see [9]) with the boundary conditions.

One final theoretical consideration will also simplify the problem. We will use an even
polynomial incorporating the boundary conditions(1− x2)2 pN(x) = (1− x2)2 ∑N

k=0 akx2k

as the approximation to the solution of the boundary value problem. This is a “Petrov–
Galerkin method” (see [4, Chap. 18, p. 598]). This amounts to a change of basis using the
change of basis from the Gegenbauer polynomials to the monomials. We will denote the
resulting matrix equation as

Lν
N+1a = s Rν

N+1a. (9)

The superscript indicates the index of the Gegenbauer polynomials used, and the subscript
indicates the order of approximation. When it is clear from context, or unnecessary, we will
omit the indices. Formulas for the entries ofL andR are

L(0)
i, j = π

[
(2 j )(2 j − 1)(2 j − 2)(2 j − 3)24−2 j

(
2 j − 4

j − 2 − i

)
− 2(2 j + 2)(2 j + 1)(2 j )(2 j − 1)22−2 j

(
2 j − 2

j − 1 − i

)
+ (2 j + 4)(2 j + 3)(2 j + 2)(2 j + 1)2−2 j

(
2 j

j − i

)]
and

R(0)
i, j = π

[
(2 j )(2 j − 1)22−2 j

(
2 j − 2

j − 1 − i

)
− 2(2 j + 2)(2 j + 1)2−2 j

(
2 j

j − i

)
+ (2 j + 4)(2 j + 3)2−2−2 j

(
2 j + 2

j + 1 − i

)]
for the Chebyshev case, and

L (ν)
i, j = π2−2ν+10(2i + 2ν)

0(ν)0(2i + 1)

×
[
(2 j )(2 j − 1)(2 j − 2)(2 j − 3)2−2 j +4

(
2 j − 4

j − i − 2

)
0( j + i − 1)

0( j + i + ν − 1)

− 2(2 j + 2)(2 j + 1)(2 j )(2 j − 1)2−2 j +2

(
2 j − 2

j − i − 1

)
0( j + i )

0( j + i + ν)

+ (2 j + 4)(2 j + 3)(2 j + 2)(2 j + 1)2−2 j

(
2 j

j − i

)
0( j + i + 1)

0( j + i + ν + 1)

]
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and

R(ν)
i, j = π2−2ν+10(2i + 2ν)

0(ν)0(2i + 1)

×
[
(2 j )(2 j − 1)2−2 j +2

(
2 j − 2

j − i − 1

)
0( j + i )

0( j + i + ν)

− 2(2 j + 2)(2 j + 1)2−2 j

(
2 j

j − i

)
0( j + i + 1)

0( j + i + ν + 1)

+ (2 j + 4)(2 j + 3)2−2 j −2

(
2 j + 2

j − i + 1

)
0( j + i + 2)

0( j + i + ν + 2)

]
for the general Gegenbauer case.

Note thatL is an upper triangular matrix andR is an upper Hessenberg matrix. This is
another simplification in the problem, since the standardQZ algorithm for the solution of
generalized eigenvalue problems first reduces the problem to the triangular-Hessenberg form
(which is always possible) and then proceeds to solve the resulting generalized eigenvalue
problem, [20]. Although the monomial basis is ill-conditioned for numerical computation,
using the monomial basis for reduction to triangular-Hessenberg form does help expose the
central point of this theoretical investigation which is the nature and origin of the spurious
eigenvalues.

Increasing the order of approximation from 2N to 2(N + 1) by using the polynomial
(1− x2)2 ∑N+1

k=0 akx2k adds a column to bothL andR corresponding to the inner products
of the derivatives of(1− x2)2x2(N+1) with Gν

2 j (x) and a row corresponding to the inner
products of derivatives of(1− x2)2x2i with Gν

2(N+1)(x). This means that as the size of the
approximation increases, the matricesL andR need not be completely recalculated. It also
means that for a given degree 2N of approximation, the principal submatrices ofL andR
contain the lesser degrees of approximation. Both properties are useful for the theoretical
analysis in this paper.

5.2. The Gegenbauer–Tau Method Yields a Regular Generalized Eigenvalue Problem

For generalized eigenvalue problems, we follow the discussion and notation of [20,
Chap. VI]. Forα, β ∈C consider(α, β) 6= (0, 0). Then for any complex scalarγ, 〈α, β〉 def=
{γ (α, β)T : γ ∈C}. Write 〈λ〉 = 〈λ, 1〉 and define〈∞〉 = 〈1, 0〉.

For vector spacesV1 andV2, x ∈ V1, and operatorsA, B with A, B : V1 → V2, if

β Ax = αBx

for (α, β) 6= (0, 0) andx 6= 0, then〈α, β〉 is a (generalized) eigenvalue of the pair(A, B)

with (right) (generalized) eigenvectorx.
The matrix pair(A, B), with both matrices square of the same dimensions, issingular

if for all (α, β), det(β A− αB) = 0. Otherwise the pair isregular. If either det(A) 6= 0 or
det(B) 6= 0, then the pair(A, B) is regular. If the pair ofN × N matrices(A, B) is regular,
then there are preciselyN generalized eigenvalues.

In triangular-Hessenberg form it is simple to show that the matrix generalized eigenvalue
problem (9) resulting from the Gegenbauer–tau method is regular. SinceL(ν) is upper
triangular, it suffices to show that the diagonal entries are nonzero. From Section 5.1 the
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j th diagonal entry ofL (ν) is

(2 j + 4)(2 j + 3)(2 j + 2)(2 j + 1)2−2 j (2 j + ν)0(ν)0(2 j + 1)

0(2 j + ν + 1)
.

Thus, there areN + 1 (generalized) eigenvalues for the matrix pair. We may find the eigen-
values as the roots of the characteristic polynomial

det
(
L (ν) − λR(ν)

)
.

From Section 5.1 we can show that for Legendre polynomials, whenν = 1/2, the first
row of the matrixR(1/2)

N+1 is zero (see also Section 5.4). Hence,R(1/2)
N+1 is singular, with a rank

of N. Therefore, there is only one linearly independent right null vector forR(1/2)
N+1 . Then

we have

THEOREM 3. The matrix pair(L(1/2)
N+1, R(1/2)

N+1) has one infinite generalized eigenvalue
〈1, 0〉 = 〈∞〉.

5.3. Generalized Eigenvalue Perturbation Theory

We use generalized eigenvalue perturbation theory to show that for 0≤ ν < 1 the sys-
tem (9) has an eigenvalue that approaches〈∞〉 as the order of approximation increases. We
first need more background from [20].

Let A(N+1) be an(N + 1) × (N + 1) matrix. Define∥∥A(N+1)

∥∥ = sup
0≤i, j ≤N

ei + j −2N |ai, j |.

Let (A, B) be a regular matrix pair with simple generalized eigenvalue〈α, β〉 and left
and right eigenvectorsy andx. Let (Ã, B̃) = (A+ E, B + F) be a regular matrix pair and
a perturbation of(A, B) with corresponding generalized eigenvalue〈α̃, β̃〉. Let ε = ‖E‖ +
‖F‖.

The chordal metricχ(〈·, ·〉, 〈·, ·〉) for generalized eigenvalues is

χ(〈α, β〉, 〈γ, δ〉) = |αδ − βγ |√
|α|2 + |β|2

√
|γ |2 + |δ|2 .

Let (A, B) be a regular pair, and let its eigenvalues be〈λ1〉, . . . , 〈λn〉. Then there is an
ordering〈λ̃1〉, . . . , 〈λ̃n〉 of the eigenvalues of(Ã, B̃) such that

lim
ε→0

χ(〈λi 〉, 〈λ̃i 〉) = 0, i = 0, . . . , n

(see [20, Theorem 2.1, p. 293]). No eigenvalues are lost in perturbing the original matrix
pair for small enough perturbations.

From [20, Theorem 2.2, p. 293] we get

χ(〈α̃, β̃〉, 〈yH Ãx, yH B̃x〉) < O(ε2).

For convenience, we will indicate the size of the matrices with a subscript. We will find a
matrix pair(E, F) so that(L(ν)

(N+1), R(ν)
(N+1)) = (L(1/2)

(N+1)+ E(N+1), R(1/2)

(N+1)+ F(N+1)). We will
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show that(L(1/2)

(N+1), R(1/2)

(N+1)) has an infinite generalized eigenvalue〈∞〉 for eachN. Defining
ε = ‖E‖ + ‖F‖ as the size of the perturbation as in [20], the matrix pair(L(ν)

(N+1), R(ν)
(N+1))

will be anO(ε) perturbation of(L (1/2)

(N+1), R(1/2)

(N+1)). If 〈α, β〉 is the generalized eigenvalue of
(L(ν)

(N+1), R(ν)
(N+1)) corresponding to the infinite eigenvalue of(L(1/2)

(N+1), R(1/2)

(N+1)) the perturba-
tion Theorem 2.2 of Stewart and Sun gives the asymptotic behavior of〈α, β〉.

5.4. Infinite Eigenvalues in the Legendre–Tau Method (ν = 1/2)

The first step in proving the existence of spurious eigenvalues for the Gegenbauer–tau
method is to examine the case ofν = 1/2 corresponding to Legendre polynomials. For
ν = 1/2 the Gegenbauer–tau method yields an infinite generalized eigenvalue.

THEOREM 1. Let N> 0 be an integer. The matrix pair(L(1/2)

(N+1), R(1/2)

(N+1)) is regular and
has a simple infinite generalized eigenvalue.

Proof. From Section 5.2 we know thatL (1/2)

(N+1) is upper triangular and nonsingular so
the matrix pair is regular.

From Section 5.1R(1/2)

(N+1) is upper Hessenberg soR(1/2)

(N+1) has rank of at leastN. It is easy
to show the elements of the first row ofR(1/2)

(N+1) are zero, soR(1/2)

(N+1) is singular and has rank
N [6].

The matrix pair(L(1/2)

(N+1), R(1/2)

(N+1)) has at least one infinite generalized eigenvalue〈1, 0〉.
It is not hard to see that this is a simple generalized eigenvalue. The associated right
eigenvector of this infinite generalized eigenvalue is a right null vector forR(1/2)

(N+1) and the null
space ofR(1/2)

(N+1) is of dimension one. Therefore, the infinite generalized eigenvalue must be
simple.

In Section 5.5 we will need the right and left eigenvectors of the matrix pair(L(1/2)

(N+1),

R(1/2)

(N+1)) associated with the infinite generalized eigenvalue.

THEOREM2. The left eigenvector of(L(1/2)

(N+1), R(1/2)

(N+1)) is

y(N+1) = (1, 0, . . . , 0),

where there are N+ 1 entries in the vector. The right eigenvector, x(N+1), is

x j = (−1)N− j

2N− j (N − j )!

∏2N−2 j −1
k=0 (2N − k)∏N− j −1

k=0 (4N + 3 − 2k)

for 0≤ j ≤ N

The proof is in [6, Section 5.3].
Now that we know that the matrix pair(L (1/2)

(N+1), R(1/2)

(N+1)) is regular and has a simple infinite
generalized eigenvalue we can use this to show that for a range ofν’s aroundν = 1/2 the
Gegenbauer–tau approximation to the solution of the model problem will give a spurious
eigenvalue.

5.5. Perturbation Analysis

With the technical lemmas from Appendix A we can prove that a spurious eigenvalue
will arise from the application of the Gegenbauer–tau approximation method to the model
problem for 0≤ ν < 1

2 and 1/2< ν ≤ 1. From Section 5.3, if a matrix pair(A, B) of
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(N + 1) × (N + 1) matrices is “close” to(L(1/2)

(N+1), R(1/2)

(N+1)) then there will be a generalized
eigenvalue〈α(N+1), β(N+1)〉 of (A, B) that corresponds to the infinite generalized eigenvalue
of (L (1/2)

(N+1), R(1/2)

(N+1)). The corresponding eigenvalue is approximately

〈
α(N+1), β(N+1)

〉 = 〈
yH L(1/2)

(N+1)x, yH R(1/2)

(N+1)x
〉 + O(ε2),

wherey andx are the left and right eigenvectors of the pair(L(1/2)

(N+1), R(1/2)

(N+1)) andε is

ε = ∥∥L(ν)
(N+1) − L(1/2)

(N+1)

∥∥ + ∥∥R(ν)
(N+1) − R(1/2)

(N+1)

∥∥.

Using the norm defined in Appendix A and Lemma 3 we can make, for sufficiently large
N, R(ν)

(N+1) as close toR(1/2)

(N+1) as we want and similarly forL(ν)
(N+1) andL(1/2)

(N+1).

THEOREM3. Let0≤ ν ≤ 1, ν 6= 1/2 be given. Let〈α(ν), β(ν)〉 be the generalized eigen-
value of(L (ν)

(N+1), R(ν)
(N+1)) that corresponds to the infinite generalized eigenvalue〈∞〉 =

〈1, 0〉 of (L(1/2)

(N+1), R(1/2)

(N+1)). Then

〈
α(ν), β(ν)

〉 =
〈

1,
2(2ν − 1)(2ν − 3)

(2N + 3)(2N + 2)(2N − 2ν + 3)(2N + 2ν + 2)

〉
+ O(ε2),

where

ε2 < e−N+4
(

AN,ν + AN, 1
2

)
(64N4 + 64N3 + 192N2 + 104N + 40)2.

The constantsAN,ν are defined in Appendix A.

Proof. First, establish the upper bound onε2. From Lemma 3 we get

∥∥L(ν)
(N+1)

∥∥ < e−N/2+2AN,ν(64N4 + 64N3 + 176N2 + 80N + 24).

and

∥∥R(ν)
(N+1)

∥∥ < e−N/2+2AN,ν(16N2 + 24N + 16).

Hence,

ε2 = (∥∥L (ν)
(N+1) − L(1/2)

(N+1)

∥∥ + ∥∥R(ν)
(N+1) − R(1/2)

(N+1)

∥∥)2

≤ (∥∥L (ν)
(N+1)

∥∥ + ∥∥L(1/2)

(N+1)

∥∥ + ∥∥R(ν)
(N+1)

∥∥ + ∥∥R(1/2)

(N+1)

∥∥)2

= e−N+4
(

AN,ν + AN, 1
2

)2
(64N4 + 64N3 + 192N2 + 104N + 40)2.

Recall thatAN,ν = (2N + ν)0(ν). Therefore,ε2 → 0 at least asN10e−N .
Now we can calculate the approximation to〈α(N+1), β(N+1)〉. Recall that

〈
α(ν), β(ν)

〉 = 〈
yH L(ν)

(N+1)x, yH R(ν)
(N+1)x

〉 + O(ε2),
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where the right and left eigenvectors of(L(1/2)

(N+1), R(1/2)

(N+1)), x andy, respectively, are given
by Theorem 2. Evaluating and simplifying gives (see [6] for details)

yH L(ν)
(N+1)x = ABν

(
5
2 − ν

)
N(2N + 4)(2N + 3)(2N + 2)(2N + 1)

0(ν + 1)(ν + 1)N

yH R(ν)
(N+1)x = − ABν(2ν − 1)

(
3
2 − ν

)
N
(N + 2)(2N + 1)

0(ν + 2)(ν + 2)N
.

Therefore, we get

〈
α(ν), β(ν)

〉 ≈ 〈
yH L(ν)

(N+1)x, yH R(ν)
(N+1)x

〉 =
〈

1,
yH R(ν)

(N+1)x

yH L(ν)
(N+1)x

〉
.

Substituting and canceling wherever possible we get〈
α(ν), β(ν)

〉 ≈
〈

1,
(2ν − 1)(2ν − 3)

(2N + 3)(2N + 2)(2N − 2ν + 3)(2N + 2ν + 2)

〉
.

See [6] for details.

This theorem leads to the following results.

THEOREM 4. The Chebyshev–tau method applied to the model problem, (1), will yield
a positive spurious eigenvalue of magnitude at least O(N4).

THEOREM5. Let 0≤ ν ≤ 1 be given. The Gegenbauer–tau approximation to the model
problem(1) will yield

1. a positive spurious eigenvalue for0≤ ν < 1/2,
2. an infinite generalized eigenvalue forν = 1/2,
3. a negative spurious eigenvalue for1/2< ν ≤ 1

for all truncation orders.

6. INFINITE EIGENVALUES IN THE LEGENDRE–TAU METHOD

This section explains how the boundary conditions act together with the Legendre–tau
method to allow the existence of an infinite eigenvalue. The Gegenbauer–tau method for
values ofν near the Legendre caseν = 1/2 will have an eigenvalue that is a perturbation
of the infinite eigenvalue. For 0≤ ν < 1/2 the perturbation moves the infinite eigenvalue
into the regime where it is positive. For 1/2< ν ≤ 1 the perturbation moves the eigenvalue
into the regime where it is negative. The origin of the infinite eigenvalue in the Legendre–
tau method together with the perturbation theory for generalized eigenvalues explains the
origin of the spurious eigenvalues.

We need to show that the Legendre–tau method of all orders applied to the model problem
(1) yields an infinite generalized eigenvalue. For a given orderN + 4 an infinite generalized
eigenvalue would be the pair〈α(N+1), β(N+1)〉 = 〈1, 0〉 for which there is a polynomial of
degreeN + 4 whose residual for the model problem

βD4u = αD2u

u(−1) = u(1) = u′(−1) = u′(1) = 0
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is orthogonal to the Legendre polynomialsP0(x), . . . PN(x). As in Section 5.1, because we
seek polynomial solutions we may incorporate the boundary conditions directly into the
equation

−D2

(
N∑

j =0

aj (1 − x2)2Pj (x)

)
= τ PN+2(x).

We can rescale and slightly simplify the problem by dividing through by−τ and incorpo-
rating it into the unknown coefficientsaj .

To simplify and eliminate the consideration of cases, consider only evenN = 2M . Solve
by expanding in the linearly independent even Legendre polynomials as basis functions.
Equation (6) is now rewritten as

M∑
j =0

aj D
2
[
(1 − x2)2P2 j (x)

] = PN+2(x).

Now expand the polynomialD2[(1 − x2)2Pj (x)] in even Legendre polynomials as

D2
[
(1 − x2)2P2 j (x)

] =
j +1∑
k=0

K j,k P2k(x).

From the orthogonality relation, the coefficientsK j,k for k = 0, . . . , j + 1 are

K j,k = 2k + 1

2

∫ +1

−1
D2

[
(1 − x2)2P2 j (x)

]
P2k(x) dx.

Integrating by parts twice and rearranging, the coefficients are

K j,k = 2k + 1

2

∫ +1

−1
P2 j (x)(1 − x2)2P′′

2k(x) dx.

For a given j , by orthogonality only the even Legendre polynomialsP2k(x) of degrees
2 j + 2, 2j , and 2j − 2 can contribute nonzero terms. That is,

D2
[
(1 − x2)2P2 j (x)

] = K j, j −1P2 j −2(x) + K j, j P2 j (x) + K j, j +1P2 j +2(x)

Using this information, we must show theM + 2 equations in theM + 1 unknownsa0 . . . aM

generated from (6) by equating coefficients ofPk(x), k = 0, . . . , M + 1 on left and right
are consistent.

The first of these equations, equating coefficients ofP0(x), would have all coefficients 0.
The equation from the coefficients forP2k, k = 1, . . . , M − 1, will involve ak−1, ak, ak+1.
Finally, the equation from the coefficients ofP2M+2 will only involve aM . Clearly, the system
is tridiagonal. The rank of the coefficient matrix isM + 1, and the rank of the augmented
matrix is alsoM + 1. The system is consistent and there is a solution. The implication is
that the Legendre–tau method allows an infinite eigenvalue.

The Legendre polynomials can be expressed by the Rodriguez formula [1]

Pj (x) = (−1) j

j ! 2 j

d j

dx j
(1 − x2) j .
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The Rodriguez formula for the Gegenbauer polynomials is, for comparison,

G(ν)
j (x) = 1

ej (1 − x2)ν−1/2

d j

dxj

[
(1 − x2)ν−1/2(1 − x2) j

]
,

where the normalizing constantej is in [1, Eq. (22.11.2), p. 785].
Using the Rodriguez formula in (6), we want to show that

d2

dx2

(
N∑

j =0

aj (1 − x2)2 d j

dxj

(−1) j

j ! 2 j
(1 − x2) j

)
= dN+2

dxN+2

(−1)N+2

(N + 2)! 2N+2
(1 − x2)N+2. (10)

has a solution. Of course, from the argument in the previous paragraph, we know that (10)
has a solution. The expression in terms of the Rodriguez expansion makes it plausible that a
solution exists. It is plausible that solution wouldnotexist for the Gegenbauer polynomials
because the derivatives of the term(1−x2)ν−1/2 in the denominator and under the derivative
will introduce terms which cannot be matched on the right side of the expression.

The expansion in terms of the Rodriguez formula explains why the Legendre–tau spectral
method has an infinite eigenvalue for the boundary-value problem (1). The similarity of the
boundary conditions to the form of the Legendre polynomial solution permits a solution
where none would ordinarily be expected. For the Gegenbauer polynomials, the boundary
conditions do not match the form of the basis polynomials because of the presence of the
term(1− x2)ν − 1/2 in the Rodriguez formula.

7. CONCLUSIONS

In prior sections, we have an explanation for the origin and a description of the nature
of the spurious eigenvalues in spectral methods for a differential eigenvalue problem. In
particular, we have an explanation for the widely reported positive spurious eigenvalues
in the Chebyshev–tau method. The analysis of the spurious eigenvalues was in terms of
a simplified model problem; a problem that is simple enough to have an explicit solution
to validate the spectral methods, yet still contains the essence of more general problems.
Many other investigators have used the model problem as an example of the use of spectral
methods. Finally, the model problem occurs naturally in the investigation of some fluid
dynamics problems. From that analysis we observe that:

1. The model problem factors into odd and even problems, each generating a spurious
eigenvalue. The factoring simplifies the analysis but is not essential to the analysis.

2. The popular Chebyshev–tau and Legendre–tau methods are each instances in a family
of spectral methods using the Gegenbauer polynomials,Gν

n(x), as basis functions.
3. One member of the family of Gegenbauer–tau methods, namely the Legendre–tau

method whenν = 1/2, applied to the model problem has an infinite eigenvalue in the sense
of generalized eigenvalue theory.

4. Positive spurious eigenvalues occurring for 0≤ ν < 1/2 are approximations to infinite
eigenvalues in a generalized eigenvalue problem forν = 1/2.

5. Large magnitude negative eigenvalues occur when 1/2≤ ν ≤ 1, prompting us to en-
large the definition of spurious eigenvalues to include all large-magnitude eigenvalues that
are perturbations of an infinite eigenvalue, regardless of sign.
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However, note that our enlarged sense of spurious eigenvalues does not emphasize the
potential effect of the spurious eigenvalues on a dynamic calculation based on a spectral
tau formulation. If a time-dependent version of a problem with spurious eigenvalues were
integrated in time, there is a large difference between problems with positive and nega-
tive spurious eigenvalues. Positive spurious eigenvalues are catastrophic to the calculation,
leading to erroneous blowup of the solution in time, whereas negative spurious eigenvalues
are innocuous. A family of related spectral methods can produce both positive and negative
spurious eigenvalues, so users must be aware how results can change as the method is varied.

6. The boundary conditions, when incorporated into a polynomial solution, match the
form of the Legendre polynomials. The similarity of the boundary conditions to the form
of the Legendre polynomials permits the infinite eigenvalue.

7. Spurious eigenvalues from the Gegenbauer–tau method grow at least as fast as

(2N)(2N + 2ν + 1)(2N + 2ν + 2)(2N + 3)

1 − 4ν2

in the truncation orderN. In particular, the spurious eigenvalues from the Chebyshev–tau
method are larger than(2N)(2N + 1)(2N + 2)(2N + 3).

For a schematic diagram of the results, consider the Legendre–tau method on the model
problem with infinite eigenvalues (along with good approximations to the true eigenval-
ues) as a point in a space of approximation methods. Other approximation methods are
perturbations away from this point. These perturbations change the infinite eigenvalue by
perturbing it away from infinity into the positive eigenvalue regime. Some other spectral
methods that are seldom used perturb the eigenvalue into the negative eigenvalue regime.
Ad hocmethods for removing spurious eigenvalues may change either the problem or the
method for the Chebyshev–tau method, perturbing the large eigenvalues into the negative
eigenvalue regime. We intend further research to make this precise with perturbation results
from generalized eigenvalue theory.

Finally, we observe that a now established diagnostic tool for use in showing that a
problem has eigenvalues that are approximations to infinite eigenvalues (i.e., are spurious)
is to observe the growth rate for dominant eigenvalues computed with truncation order,N
in the spectral series. If the magnitude of the eigenvalue grows faster thanNn, n ≈ 3 or 4,
it is probably spurious in the sense we have explained in this paper.

APPENDIX A: DEFINITION OF THE MATRIX NORM

This section contains several facts for the generalized eigenvalue analysis. All proofs are
technical and are omitted. Detailed proofs are in [6].

The first detail is the definition of the matrix norm defining the size of the perturbation
ε in Section 5.3. LetA(N+1) be an(N + 1) × (N + 1) matrix. Then define∥∥A(N+1)

∥∥ = sup
0≤i, j ≤N

ei + j −2N |ai, j |.

It is easy to show that this is indeed a norm.
The rest of this section consists of technical lemmas that will help with the analysis in

Section 5.5. These lemmas, while important to the analysis, detract from the actual analysis.
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The next lemma gives an upper bound on the norm of the matricesL(ν)
(N+1) and R(ν)

(N+1)

under the norm defined in this section.

LEMMA 3. Letν ≥ 0 be given. Then∥∥L(ν)
(N+1)

∥∥ < e−N/2+2AN,ν(64N4 + 64N3 + 176N2 + 80N + 24)

and ∥∥R(ν)
(N+1)

∥∥ < e−N/2+2AN,ν(16N2 + 24N + 16)

where

Ai,ν =
{

1, ν = 0,

(2i + ν)0(ν), ν 6= 0.

The last two lemmas in this section will be used in Section 5.5 to estimate perturbed
eigenvalues. The first lemma gives the evaluations of several summations.

LEMMA 4. Let N > 0 be an integer. Then

1.

N∑
j =0

[
2−2 j (2 j )! (−1)N− j

j ! 0( j + ν + 2)2N− j (N − j )!

∏2N−2 j −1
k=0 (2N − k)∏N− j −1

k=0 (4N + 3 − 2k)

]
= A

(
3
2 − ν

)
N

0(ν + 2)(ν + 2)N
,

2.

N∑
j =0

[
j 2−2 j (2 j )! (−1)N− j

j ! 0( j + ν + 2)2N− j (N − j )!

∏2N−2 j −1
k=0 (2N − k)∏N− j −1

k=0 (4N + 3 − 2k)

]

= A
(
N2 + 5

2 N
)(

3
2 − ν

)
N(

3
2 − ν

)
0(ν + 2)(ν + 2)N

,

3.

N∑
j =0

[
2−2 j (2 j )! (−1)N− j

j ! 0( j + ν + 1)2N− j (N − j )!

∏2N−2 j −1
k=0 (2N − k)∏N− j −1

k=0 (4N + 3 − 2k)

]
= A

(
5
2 − ν

)
N

0(ν + 1)(ν + 1)N
,

4.

N∑
j =0

[
j 2−2 j (2 j )! (−1)N− j

j ! 0( j + ν + 1)2N− j (N − j )!

∏2N−2 j −1
k=0 (2N − k)∏N− j −1

k=0 (4N + 3 − 2k)

]

= A
(
N2 + 5

2 N
)(

5
2 − ν

)
N(

5
2 − ν

)
0(ν + 1)(ν + 1)N

,

5.

N∑
j =0

[
j 22−2 j (2 j )! (−1)N− j

j ! 0( j + ν + 1)2N− j (N − j )!

∏2N−2 j −1
k=0 (2N − k)∏N− j −1

k=0 (4N + 3 − 2k)

]

= A
(
N2 + 5

2 N
)(

5
2 − ν

)
N(

5
2 − ν

)
0(ν + 1)(ν + 1)N

(
1 + (N − 1)

(
N + 7

2

)(
7
2 − ν

) )
,
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where

A = (2N)!

2N N!
∏N−1

k=0 (4N + 3 − 2k)

The last lemma in this section gives simplified formulas forR(ν)
0, j andL(ν)

0, j for ν ≥ 0

LEMMA 5. Let N> 0 be an integer, 0 ≤ j ≤ N andν ≥ 0 then,

R(ν)
0, j = Bν(2ν − 1)

2−2 j (2 j )!

j ! 0( j + ν + 2)
(((2ν − 3) j − 2))

L (ν)
0, j = Bν

2−2 j (2 j )!

j ! 0( j + ν + 1)

(
(16ν2 − 96ν + 140) j 2 − (16ν2 − 100) j + 24

)
,

where

Bv =
{

2, ν = 0,

ν0(ν), ν 6= 0.
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